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Abstract—Accelerating program performance via SIMD vector
units is very common in modern processors, as evidenced by
the use of SSE, MMX, VSE, and VSX SIMD instructions in
multimedia, scientific, and embedded applications. To take full
advantage of the vector capabilities, a compiler needs to generate
efficient vector code automatically. However, most commercial
and open-source compilers fall short of using the full potential of
vector units, and only generate vector code for simple innermost
loops.

In this paper, we present the design and implementation of an
auto-vectorization framework in the back-end of a dynamic com-
piler that not only generates optimized vector code but is also well
integrated with the instruction scheduler and register allocator.
The framework includes a novel compile-time efficient dynamic
programming-based vector instruction selection algorithm for
straight-line code that expands opportunities for vectorization in
the following ways: (1) scalar packing explores opportunities of
packing multiple scalar variables into short vectors; (2) judicious
use of shuffle and horizontal vector operations, when possible; and
(3) algebraic reassociation expands opportunities for vectorization
by algebraic simplification.

We report performance results on the impact of auto-
vectorization on a set of standard numerical benchmarks using
the Jikes RVM dynamic compilation environment. Our results
show performance improvement of up to 57.71% on an Intel Xeon
processor, compared to non-vectorized execution, with a modest
increase in compile-time in the range from 0.87% to 9.992%. An
investigation of the SIMD parallelization performed by v11.1 of
the Intel Fortran Compiler (IFC) on three benchmarks shows
that our system achieves speedup with vectorization in all three
cases and IFC does not. Finally, a comparison of our approach
with an implementation of the Superword Level Parallelization
(SLP) algorithm from [20], shows that our approach yields a
performance improvement of up to 13.78% relative to SLP.

Keywords-Vectorization; Instruction Selection; Dynamic Pro-
gramming; Dynamic Optimization

I. INTRODUCTION

Increasing demand on applications in the multimedia, graph-
ics, embedded, and numerical computing domains have re-
sulted in the addition of SIMD vector units in many current
processor architectures. These machines range from general
purpose processors [7], [25] to massively parallel supercom-
puters [23]. The vector units support short SIMD vector
instructions that exploit data-level parallelism by performing
multiple identical scalar operations in parallel. Given the
mounting power constraints in processor design, upcoming
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architectures are expanding the size of the SIMD unit to
perform more operations in parallel, e.g., the AVX extensions
in the x86 SSE architectures now support vector sizes of 256
bits instead of 128 bits [4].

We believe that applications need to be automatically vec-
torized in a compiler framework instead of being manual
rewritten for vector execution. While the productivity benefits
of compiler vectorization are obvious, the performance ben-
efits stem from the fact that SIMD vectorization needs to be
tightly integrated with the register allocator and instruction
scheduler phases of a compiler back-end. Some compilers
like GCC, Intel C compiler and Sun JDK support only a
limited set of loop-based vectorization scenarios that are driven
by loop unrolling (e.g., [11]). Such loop-based vectorization
techniques can not handle more complex data dependences
such as permutation of data and packing of scalar data values
within the loop body.

Though the compiler community has studied the problem
of automatic parallelization for more than four decades, auto-
matic short SIMD vectorization poses additional challenges
that make the task of a compiler hard. We believe that
there are three key challenges: (1) performing vectorization
in the back-end of a compiler where low-level scalar and
vector instructions need to be co-optimized; (2) permutations
required for interleaved data accesses that often defeat com-
mon vectorization patterns such as packing, processing, and
unpacking; (3) performing vectorization in a compile-time
efficient manner for use in dynamic compilation and in fast
edit-compile time development cycles.

The first challenge raises an interesting point as to whether
automatic vectorization should be performed closer to the
source-level or on a lower-level intermediate representation
closer to the machine-level. While source-level vectorization is
convenient since aliasing and alignment information are read-
ily available at that level, the selection of vector instructions
at the source-level is usually decoupled from standard back-
end optimizations such as instruction scheduling and register
allocation. On the other hand, vectorization as a back-end pass
has the advantage of operating on optimized code and thereby
leverages more accurate cost analysis while working closely
with the instruction scheduling and register allocation phases.
The lack of aliasing and alignment information in a back-
end can be addressed by propagating the information from the
source-level down to the back-end. In contrast to past work



that has focused on source-level loop-based vectorization,
this paper focuses on vectorization as a back-end pass in a
dynamic compilation environment or any other environment
where compile-time efficiency is of interest.

The key contributions of this paper include:
• a novel dynamic programming approach to automatic

vector instruction selection. The dynamic programming
technique is driven by a cost-model that accounts for
instruction costs and register pressure.

• a scalar packing optimization pass in the instruction
selection algorithm that combines scalar operations into
vector operations. Other optimizations including alge-
braic reassociation are also performed to expand the
opportunities for vector code generation.

• a compile-time efficient solution to automatic vector in-
struction selection.

• an experimental evaluation of the auto-vectorization
framework on six standard numerical benchmarks in the
back-end of Jikes RVM dynamic compiler. Our results
show a performance improvement of up to 57.71%,
compared to the non-vectorized execution with a modest
increase in compile time in the range from 0.87% to
9.992%. An investigation of the SIMD parallelization
performed by v11.1 of the Intel Fortran Compiler (IFC)
on three benchmarks for which Fortran versions are
available shows that our system achieves speedup with
vectorization in all three cases and IFC does not. Finally,
a comparison of our approach with an implementation
of the Superword Level Parallelization (SLP) algorithm
from [20], shows that our approach yields a performance
improvement of up to 13.78% relative to SLP.

The rest of the paper is organized as follows. In Section II,
we present a motivating example to illustrate the effectiveness
of our approach. The overall automatic vectorization frame-
work is described in Section III. Section IV describes the
automatic vector instruction selection algorithm. Experimental
evaluations are presented in Section V. We discuss related
work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE: COMPLEX ARITHMETIC

Consider the innermost loop nest of a double precision
complex arithmetic computation kernel of the NAS Parallel
Benchmark FT code shown in Figure 1(a). The code fragment
initializes the REAL and IMAG components of local complex
numbers x11 and x21 from an input complex number (elided
for simplicity). This code uses two-element arrays for complex
variables and 2N -element arrays of doubles for N -element
arrays of complex variables. Local variables x11 and x21 are
used as operands for a complex add and the result is stored in
complex array scr. A traditional vectorization algorithm that
operates close to the source-level can vectorize most of the
complex number operations for array accesses in this example
except for two intricate scenarios: (1) the reversed pattern of
accesses to the u1 complex number components in lines 7 and
8, e.g., on line 8, the imaginary component of u1 is multiplied
by the REAL component of x11 − x21; (2) combining the

subtraction and addition operations performed on scalar values
within a vector register in lines 7 and 8. If we carefully observe
the loop-nest, we can see that several standard compiler
optimizations can be applied to this loop-nest such as scalar
replacement for arrays, common subexpression elimination,
loop-invariant code motion, and dead-code elimination. The
resulting optimized code is shown in Figure 1(b). The only
memory operations needed are stores to the scr arrays.

To vectorize this kernel in a dynamic compilation environ-
ment for a managed runtime such as Java Virtual Machine or
a .NET runtime, one is faced with several other difficulties.
The first and foremost difficulty is to ensure that the kernel
is free of exceptions and misalignment issues. In particular,
the array accesses should not result in an array-bounds-check

exception. Additionally, the compiler has to check that scr

and u1 are not pointing to the same array (i.e., they are not
aliased to each other) to ensure that the loads of u1 can be
safely hoisted outside the loop. Also, the runtime values of
REAL, IMAG, off1, and off2 do not make the array accesses
mis-aligned. We can handle these difficulties by specializing
and creating an outlined version of the kernel that is aligned
to 16-byte boundaries and is guaranteed to be bounds-check
free and alias-free.

The 2-address intermediate back-end code generated within
a compiler is shown in Figure 1(c). Existing vectorization al-
gorithms when applied at such a low-level of the intermediate
representation as in Case (c) usually only vectorize the store
and load operations since they do not expend much effort on
packing scalar variables. For example, the work on super-word
parallelism in [20] would not be able to handle the interchange
of scalar values in lines 23 and 24 with respect to lines 18
and 20, since the scalar values in the vector register need to
be reversed in the next operation.

Figure 1(d) depicts the code generated by our vectorizer
framework. It includes scalar packing for values held in the
x11 REAL and x11 IMAG temporaries using pack instructions
that correspond to traditional move instructions on a target
architecture. The shuffle instruction on line 13 takes care of
the interleaved data accesses of u1 array. The vaddsub on line
14 combines the subtraction and addition operations in a vector
register. Then standard arithmetic operations can be performed
on the REAL and IMAG values.

III. OVERALL FRAMEWORK

Figure 2 depicts the components of our vectorization frame-
work along with their interaction with other components of the
dynamic compiler. The dynamic compiler selectively chooses
methods for higher level of optimization including the auto-
vectorization optimization proposed in this paper. As with
other optimizations, the selection criteria for vectorization is
guided by profiling information, i.e., based on the profiling
information of calling contexts.

The auto-vectorization framework is invoked as a back-end
pass after the intermediate code has been specialized and opti-
mized at a higher level. The higher-level optimizations include



InnerLoopBody:

1: x11[REAL] = ...

2: x11[IMAG] = ...

3: x21[REAL] = ...

4: x21[IMAG] = ...

5: scr[REAL+off1] = x11[REAL] + x21[REAL]

6: scr[IMAG+off1] = x11[IMAG] + x21[IMAG]

7: scr[REAL+off2] =

u1[REAL] * (x11[REAL] - x21[REAL])

- u1[IMAG] * (x11[IMAG] - x21[IMAG])

8: scr[IMAG+off2] =

u1[IMAG] * (x11[REAL] - x21[REAL])

+ u1[REAL] * (x11[IMAG] - x21[IMAG])

(a) Original Code

1a: u1_REAL = u1[REAL]

1b: u1_IMAG = u1[IMAG]

InnerLoopBody:

1: x11_REAL = ...

2: x11_IMAG = ...

3: x21_REAL = ...

4: x21_IMAG = ...

5: scr[REAL+off1] = x11_REAL + x21_REAL

6: scr[IMAG+off1] = x11_IMAG + x21_IMAG

7a: t1 = x11_REAL - x21_REAL

7b: t2 = x11_IMAG - x21_IMAG

7: scr[REAL+off2] = u1_REAL * t1 - u1_IMAG * t2

8: scr[IMAG+off2] = u1_IMAG * t1 + u1_REAL * t2

(b) Optimized code after Scalar Replacement, CSE, LICM, and Dead Code
elimination.

1: load u1_REAL, u1[REAL]

2: load u1_IMAG, u1[IMAG]

InnerLoopBody:

3: mov x11_REAL, ...

4: mov x11_IMAG, ...

5: mov x21_REAL, ...

6: mov x21_IMAG, ...

7: mov a1, x11_REAL

8: add a1, x21_REAL

9: store scr[REAL+off1], a1

10: mov a2, x11_IMAG

11: add a2, x21_IMAG

12: store scr[IMAG+off1], a2

13: mov t1, x11_REAL

14: sub t1, x21_REAL

15: mov t2, x11_IMAG

16: sub t2, x21_IMAG

17: mov a3, t1

18: mul a3, u1_REAL

19: mov a4, t2

20: mul a4, u2_IMAG

21: sub a3, a4

22: store scr[REAL+off2], a3

23: mul t1, u1_IMAG

24: mul t2, u1_REAL

25: add t1, t2

26: store scr[IMAG+off2], t1

(c) Intermediate 2-address Code

1: vload v0, u1[REAL:IMG]

InnerLoopBody:

2: pack v1, x11_REAL:x11_IMAG

3: pack v2, x21_REAL:x21_IMAG

4: vmov v3, v1

5: vadd v3, v2

6: vstore scr[REAL+off1:IMAG+off1], v3

7: vmov v4, v1

8: vsub v4, v2

9: vmov v5, v4

10: vmul v5, v0

11: vswap v6, v0

12: vmul v4, v6

//shuffle values across vector registers

13: shuffle v5.upper64, v4.lower64

// horizontal operation using vaddsub

14: vaddsub v5, v4

15: vstore scr[REAL+off2:IMAG+off2], v5

(d) Optimized Intermediate Code

Fig. 1. Example: Double-precision complex floating point arithmetic in NPB-FT benchmark. Assumptions: (1) each vector register is 16 byte wide; (2) all
arrays are aligned at 16 byte boundaries; (3) REAL and IMAG are compile-time constants with values 0 and 1 respectively; (4) off1 and off2 are divisible by
2 – making scr array accesses aligned.
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Fig. 2. Overall framework for auto-vectorization in a dynamic compiler. The
vector partitioner is introduced as a backend pass.

standard alignment-specific optimizations such as loop peel-
ing, scalar expansion, scalar replacement, and loop-unrolling.
The vectorization pass is followed by other back-end passes

like instruction scheduling and register allocation. Additional
aliasing and alignment information is passed down from the
high-level intermediate representation to disambiguate mem-
ory references in the vectorization framework.

Within the vectorization framework, we build a data depen-
dence graph for each region of straight-line code (currently
at a basic block level). The dependence graph is then used
to perform cost-based vector instruction selection. The in-
struction selection phase expands opportunities for generating
vector code by performing aggressive scalar packing, code
shape optimizations like algebraic reassociation, and scalar
expansion. The generated vector and scalar instructions are
then scheduled on the target system. The scheduler needs to
pay special attention to various architectural considerations,
e.g., the Intel SSE unit supports two register ports that can be
simultaneously read and written. Finally the register allocation
phase is invoked before generating the assembly code for the
target SIMD architecture.



IV. AUTOMATIC VECTOR INSTRUCTION SELECTION USING
DYNAMIC PROGRAMMING

Given the data dependence graph of the intermediate code
that represents the flow of values in a straight-line code of
a basic block and the underlying SIMD architecture specific
instructions, the goal of optimal vector instruction selection
is to find an optimal covering of the dependence graph nodes
using both scalar and vector instructions. The nodes in the
dependence graph consist of individual intermediate 2-address
instructions. The edges in the dependence graph consists
of flow dependences1. Memory dependences are represented
conservatively in the dependence graph such that they do
not reorder load and store IR instructions. From now on, we
will refer to a “scalar tile” as a scalar IR instruction that
has a one-to-one mapping with a machine instruction and a
“vector tile” as a sequence of scalar IR instructions that can be
replaced by a single vector machine instruction. Each node in
the dependence graph can have at most two incoming edges
since the IR is assumed to be in 2-address code form, but
a node can have several outgoing edges indicating sharing
of values. This yields a DAG structure for the dependence
graph. For convenience, we add a dummy nop sink node in
the dependence graph to make it connected.

In this section we describe a vector instruction selection
algorithm to select both scalar and vector tiles in a compile-
time efficient manner. Our vector instruction selection al-
gorithm uses a dynamic programming based approach that
computes minimum cost at every node of the dependence
graph. Unlike normal instruction selection, we consider several
possibilities to pack scalar values into vector registers. We also
expand opportunities for vector instruction selection using the
optimizations described in Section IV-A.

The dependence graph for a straight-line code region is
denoted by D = �N,E�, where N consists of the set of IR

instructions and E = {�n1, n2�}, where �n1, n2� denotes a
flow dependence from e1 ∈ N to e2 ∈ N . As mentioned
earlier, other forms of register dependences such as anti and
output are handled by a renaming phase prior to the instruction
selection pass. The dependence graph, D is pre-processed to
be made single-sink by adding a nop node.

Let k denote the width of the underlying SIMD vector unit.
Let T be the set of scalar and vector tiles enumerating the
machine instructions. We say a scalar tile t ∈ T matches a
node n ∈ N in D if n can be performed using the machine
instruction t (i.e., there is one-to-one correspondence between
an IR instruction and a tile) and the direct-predecessors of
n match with those in t. Similarly, we say a vector tile
t ∈ T matches a tuple of k nodes �n1, n2, · · · , nk�, if
�n1, n2, · · · , nk� can be performed using the machine instruc-
tion t. We denote the operation specified at a node n ∈ N as
op(n) and the cost of performing the operation as op cost(n).
We define a scalar cost map, scost : N → Z+ as the cost of
performing a node n ∈ N using a matched scalar tile.

1Anti- and output- dependences on scalar operations can be eliminated by
a renaming phase before instruction selection.

We define vcost : (N × N × · · · × N) → Z+ as the cost
of performing a vector tuple �n1, n2, · · · , nk� of instructions
in a vector tile. Let pack cost : (N × N · · · × N) → Z+ be
the cost of packing �n1, n2, · · · , nk� into a vector register.
Let unpack cost : (N × N · · · × N) × N → Z+ be the
cost of unpacking a node ni from a vector register containing
�n1, n2, · · · , nk�. Let shuffle cost : (N×N · · ·×N) → Z+ be
the cost of shuffling the contents of a vector register containing
�n1, n2, · · · , nk�. We assume uniform cost for shuffling any
number of scalar values within a vector register. A tuple of
IR instructions v = �n1, n2, · · · , nk� is vectorizable if there
exists a vector tile that can combine the scalar operations
in the vector tuple. Let the predicate vect(ni) indicate true

if ni is packed with other IR instructions in a vector tile.
Let shuffle(�n1, n2, · · · , nk�) represent any desired shuffled
combination of �n1, n2, · · · , nk�.

Definition 4.1: Let us now describe the legal rules for
combining scalar operations to generate a vector tuple v =
�n1, n2, · · · , nk�:

• no pair of nodes, ni and nj in v are dependent on
each other, i.e., there exists no path of flow dependence
between them in the dependence graph;

• Replacing �n1, n2, · · · , nk� by a single node in the full
dependence graph (including anti, output dependence)
does not create a cycle [27];

• v is vectorizable;
• if each operation ni in v is a memory operation such

as load and store IR instructions, then the memory
operations must be from contiguous memory locations
and aligned.

Let V denote the set of vector tuples generated from the
instruction selection algorithm. Given the above definitions,
we now describe the steps to compute costs for scalar nodes
in the dependence graph. The cost of matching a dependence
graph node n of the form shown in Figure 3 with a scalar tile
is given in Figure 4.

The scalar cost computation involves considering several
scenarios and choosing the minimum cost among them: (1)
if the predecessors of n were paired in a vector register
already, then we consider the cost of performing a horizontal
operation on the vector register using a matched tile; (2) if
the predecessors of n were paired in a vector register in a
reversed order, then we shuffle the values in the vector register
and perform a horizontal operation on the vector register; (3)
if any of the predecessors was packed with another node in a
vector register already, then extract the scalar value from the
vector register; (4) if none of the predecessors were packed in
any vector register – then add up the individual scalar cost of
each predecessor. Note that cases (1) and (2) are special cases
of the more general case (3) in 2-way SIMD unit. Finally this
cost is added to the cost of the matched scalar tile to generate
the cost of covering a scalar tile for a node n in D.

The cost of covering a set of dependence graph nodes (as
shown in Figure 5) with a vector tile is shown in Figure 6.
The notation ni

t used in Figure 6 denotes the t-th operand of
a scalar operation at node ni. The cost computation involves
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Fig. 3. Scalar Cost Computa-
tion Scenario

scost(n) = min

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

op cost(op(n)) if �n1, n2� ∈ V ∧ op(n) ∈ T

shuffle cost(�n2, n1�)+ if �n2, n1� ∈ V

op cost(op(n))) ∧ op(n) ∈ T

unpack cost(�p1, · · · , n1, · · · , pk�, n1)+ if �p1, · · · , n1, · · · , pk� ∈ V

unpack cost(�m1, · · · , n2, · · · , mk�, n2) + op cost(op(n)) ∧ �m1, · · · , n2, · · · , mk� ∈ V

unpack cost(�p1, · · · , n1, · · · , pk�, n1)+ if �p1, · · · , n1, · · · , pk� ∈ V

scost(n2) + op cost(op(n))

scost(n1) + unpack cost(�p1, · · · , n2, · · · , pk�, n2) if �p1, · · · , n2, · · · , pk� ∈ V

op cost(op(n))

scost(n1) + scost(n2) + op cost(op(n)) otherwise

Fig. 4. Cost computation for scalar tile selection

a series of possibilities for packing and unpacking individual
scalar operations. The equations also take into account for
shuffle operations in vector register. The final vector tile cost
is obtained by taking a minimum of all the possibilities.
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Fig. 5. Vector cost computation scenario

Using the scost and vcost equations from Figure 4 and
Figure 6, the dynamic programming algorithm is presented in
Figure 7. There are three passes to the algorithm. The first pass
walks over the dependence graph in a top down fashion (source
to sink) and computes minimum scalar and vector costs for
every possible scalar and vector operation in the dependence
graph respectively. The cost of the designated sink node is the
best cost estimation of generating machine code for the set
of IR instructions. In a second pass, the best cost is used to
determine the best scalar or vector tile at every node in the
dependence graph. This is obtained by making a bottom-up
pass (sink to source) over the dependence graph. Finally, a
top down pass over the dependence graph is performed and
best tile for each dependence graph node is used to generate
code.

In Figure 9, we show the steps of applying Algorithm 7 to
the example program in Figure 1(c). The final vector code is
shown in Figure 1(d).

A. Additional Optimizations

Algorithm 7 judiciously uses shuffle instructions to choose
best estimates for scalar and vector cost. However, there
are several other optimization scenarios which can easily
be incorporated into our auto-vectorization algorithm. These
scenarios are depicted in Figure 10. Case 1 is the scenario
where values are shuffled across multiple vector registers.

Case 2 shows the standard scenario of swapping values within
a vector register using shuffle instructions. Cases 3 and 4
depict scenarios where scalar expansion technique can be
used to expand either the same scalar operation or multiple
scalar operations into a vector register. Case 5 is the case
where algebraic reassociation is used to reshape the code for
vectorization. In particular, we use algebraic reassociation for
the following scenarios: (1) t1−t2 is transformed to t1+(−t2)
for expanding the opportunity for another ”+” operation to be
vectorized; (2) t1∗(t2+t3) is rewritten as t1∗t2+t1∗t3 using
distributivity – this scenario is shown in Case 5. Reshaping of
code requires that the operations be commutative, associative,
and distributive. Special care must be taken while dealing with
floating point values i.e., if strict conformance is required, then
standard algebraic reassociation can not be performed, e.g.,

rewriting a/b to a ∗ (1/b).

B. Moderating register pressure

One of the key considerations in optimized machine code
generation is to utilize the register files efficiently. To that end,
we can extend our cost model to support register pressure.
Let R be the set of available scalar and vector registers. We
redefine scalar cost, scost : N × R → Z+ as the cost of
performing a node n ∈ N using a matched scalar tile and
r ∈ R number of registers. Similarly, we redefine vcost :
(N × N × · · · × N) × R → Z+ as the cost of performing
a vector tuple �n1, n2, · · · , nk� in a vector tile using r ∈ R
number of registers. These new scost and vcost cost functions
are incorporated into our algorithm in Figure 7 on lines 14
and 21 respectively.

C. Discussion

It is well-known that optimal instruction selection on DAG
data structures is NP-hard [6], [3]. We presented a dynamic
programming based approach to perform both scalar and vec-
tor instruction selection simultaneously. The algorithm ignores
the fact that there can be shared nodes in the dependence
graph whose cost estimation may not yield optimal results
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Fig. 6. Computation of cost for vector tile selection

due to sharing across multiple paths. Several approaches have
been proposed in the literature to improve instruction selection
within a DAG e.g., (1) the DAG can be broken into a series of
trees and each individual tree can be selected individually [27];
(2) the shared nodes can be separately processed after normal
instruction selection to take the common subexpression costs
into account [15]. For this paper, we use approach (1) in our
implementation.

Scheduling of the generated scalar+vector code is important.
After the algorithm in Figure 7 is performed, we schedule the
code using a list scheduler that schedules basic blocks based
on critical path length. The critical path length is computed
using the dependence graph and relative cost estimates of each
scalar and vector instruction.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation of the
automatic vectorization framework described in Sections III
and IV in the Jikes RVM dynamic optimizing compiler [10].
We describe the overall compilation environment and then
present results on performance improvement compared to
an implementation of the vectorization approach described

in [20]. We also report on compilation time overheads, and
reductions in static code size.

Benchmarks: In this paper, we study the impact of au-
tomatic vector instruction selection on numerical applications.
The benchmarks we consider include three serial Java numeric
applications (FT, CG, and MG) obtained from the NAS Parallel
Benchmark (NPB) Suite [9] and three additional serial Java
applications (SOR and LUFact from Section 2 and MolDyn

from Section 3) from the Java Grande Forum (JGF) [13]
benchmark suite. The other benchmarks in these two suites did
not offer much scope for performance improvement using au-
tomatic vectorization. Our choice of Java benchmarks follows
from the use of Jikes RVM, which executes Java programs;
however, the techniques in this paper should be applicable to
C and Fortran programs as well. The scientific kernels in both
JGF and NPB use double-precision floating-point operations.
Note that our proposed algorithm in Section IV applies to any
vector length.

Implementation Details: The vectorization framework
described in Section IV was implemented in version 3.0.0 of
the Jikes RVM Research Java Virtual Machine [1]. The boot
image for Jikes RVM used a 32-bit x86 production configu-



Func AutoVectorize1
Input : IR for method m and its dependence graph D = �N, E� (D is made connected by a dummy nop node – op cost of a nop node is 0)
Output: IR with vector instructions
FindBestCost (D); //First Pass2
bestTile := FindBestTile (D); //Second Pass3
Generate code using a topological sort over D and bestTile choice for each node; //Third Pass4
return;5

Func FindBestCost (D)6
W := all the root nodes of D; //nodes with no incoming edges7
scost := φ; //scost not yet computed8
vcost := φ; //vcost not yet computed9
visited := false; //no node is visited yet10
vecSet := φ; //set of vector tuples generated11
while !W.empty() do12

nk := remove a node from W ;13
Compute scost(nk) using Figure 4;14
Save the tile selection that yields the minimum value for scost(nk);15
visited(nk) := true;16
for each vector tuple �n1, · · · , nk� do17

if visited(ni) == true, ∀i = 1..k and �n1, · · · , nk� can be legally combined using Definition 4.1 then18
v := �n1, · · · , nk�;19
add v to vecSet;20
Compute vcost(v) using Figure 6;21
Save the tile selection that is used to compute minimum value for vcost(v);22

for each s ∈ succ(nk) do23
//each successor of nk

if all the pred(s) are visited then24
add s to W ;25

return;26

function FindBestTile (D)27
W := leaf node of D;28
while !W.empty() do29

n := remove a node from W ;30
bestTile[n] := Find the scalar or vector tile that produced lowest cost for n; //Resolve ties arbitrarily31
for each p ∈ pred(n) do32

add p to W ;33

return;34

Fig. 7. Dynamic programming-based automatic vector tile selection.

ration. Like other JVMs, this version of Jikes RVM uses SSE
registers for both scalar single and double precision arithmetic
(instead of using the x86 Floating Point unit). The main reason
for doing so is the runtime improvements achieved from using
the SSE unit instead of the normal floating point unit. There
are 8 (XMM0-XMM7) SSE registers that are exposed in a 32-
bit configuration, out of which (XMM7) is used as a scratch
register. Effectively there are seven XMM registers available
for scalar single and double precision arithmetic operations
and also, for vector operations.

We extend the Jikes RVM IA32 assembler generator to
support generation of SSE instructions used for swap, shuffle,
horizontal arithmetic, packing, and unpacking operations [12]
in XMM registers. The alignment offset of each array object
is chosen so that element 0 is aligned on a 16-byte boundary.

For the dynamic compilation configuration, we set the
initial compiler as the optimizing compiler with -O2 for the
optimization level to enable a standard set of optimizations
to be performed prior to vectorization, including Common
Subexpression Elimination (CSE), Dead Code Elimination

(DCE) and Scalar Replacement (SR) 2.
A set of preprocessing transformations is performed at the

bytecode level within the Soot Java Bytecode Transformation
Framework [28] prior to program execution and dynamic
compilation. These include Loop Unrolling (LU), Code Spe-
cialization (CS), Scalar Expansion (SE), and Loop Peeling
(LP). The specialized code is ensured to be free of alignment
issues, aliasing dependences, and exception problems that
include bounds-check and null-pointer exceptions.

Table I summarizes the optimizations that were actually
performed on each benchmark.

Experimental Platform: All results except Figure 12 were
obtained on a Quad-Core Intel E5430 Xeon 2.66GHz system
with 8GB memory, running Red Hat Linux (RHEL 5). For
Figure 12 we use a Quad-Core Intel E5440 Xeon 2.83GHz
system due to the availability of Intel’s Fortran compiler on
the system. The execution times reported were the best of three

2The public release version of Jikes RVM 3.0.0 enables Scalar Replacement
transformation at the highest optimization level (-O3). We changed this setting
by enabling Scalar Replacement at optimization level -O2 for our framework.



Instruction Cost
memory move 4
register move 1
vector memory move 4
vector register move 1
packing instruction 2
unpacking instruction 2
shuffle within a vector register 2
shuffle across vector registers 5
vector addition 5
vector subtraction 5
vector multiply 10
vector divide 10
vector addsub 5

Fig. 8. The costs of vector and scalar machine
instructions were determined on a x86 machine using
microbenchmarks.
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vcost(<17,19>) = 15
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vcost(<21,25>) = 69

vcost(<22,26>) = 73

scost(<Nop>) = 91

Fig. 9. Final cost estimates obtained by applying method FindBestCost of
Algorithm 7 to Example 1(c). We assume that the mov instructions on lines 3,
4, 5, and 6 in Figure 1(c) are memory load operations. We also assume that
the instructions on lines 1 and 2 are vectorized in a predecessor block and are
used in the loop-nest.

Optimizations Performed FT CG MG SOR LUFact MolDyn
Scalar Expansion (Soot) ×

√ √ √
×

√

Loop Unrolling (Soot)
√ √ √ √ √ √

Loop Peeling (Soot)
√ √ √ √ √ √

Code Specialization (Soot)
√ √ √ √ √ √

Common Subexpression Elimination (Jikes)
√

×
√

×
√ √

Dead Code Elimination (Jikes)
√ √ √ √ √ √

Scalar Replacement (Jikes)
√ √ √ √

×
√

TABLE I
LIST OF BENCHMARKS AND THE OPTIMIZATIONS APPLIED ON EACH BENCHMARK

runs within a single JVM instance for each benchmark. Since
all benchmarks studied in this paper are sequential, the results
are not impacted by the number of cores.

Experimental Results: We compared our automatic vec-
torization algorithm (described in Section IV) with a prototype
implementation of the superword-level vectorization algorithm
from [20]3. We refer to our approach as SP (for Scalar
Packing) and superword level vectorization as SLP. For both
approaches, we include liveness-based dead-code elimination
and copy propagation passes (referred to as Opt) after register
allocation pass to eliminate redundant scalar packing and
unpacking instructions. This pass produces tighter vector code.
We measured the impact of Opt on both SP and SLP

algorithms.
Experimental results are reported for the following five

cases:

3We implemented this superword vectorization algorithm in Jikes RVM
3.0.0 for the purpose of this research.

• Sequential: without vectorization, but with unrolling
(see below);

• SLP: Superword vectorization algorithm from [20];
• SLP+Opt: Superword vectorization with register alloca-

tor level Opt pass;
• SP: Our approach described in Section IV;
• SP+Opt: Our approach with register allocator level Opt

pass;

Since loop unrolling is a common compiler transformation for
enabling SIMD parallelism, we performed loop unrolling on
all innermost loops in all benchmarks and studied its impact
for unroll factors 2, 4, 8, and 16.

For all the benchmarks shown in Table I, we measured the
speedup relative to the serial execution of the benchmark with-
out vectorization. In Figure 11, we show the speedups of each
benchmark relative to non-unrolled sequential execution of the
five cases listed above. In FT, SOR, and MolDyn benchmarks,
SP introduced more opportunities for packing the scalars into
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Fig. 11. Speedups as a function of unroll factor for the five cases, relative to the performance of non-unrolled non-vectorized code. X-axis denotes the
unroll factors and Y-axis shows the speedups. The asterisk (*) next to an unroll factor denotes the unroll factor that produced best cost using our cost model
presented in Section IV.

vector than SLP (The FT benchmark uses complex numbers
and can benefit from vectorization even when the unroll factor
is 1). For FT, the SP algorithm introduces vector swap and
horizontal computations that result in fully vectorizing the
innermost loop body using SSE instructions, as discussed
in Section II. For benchmarks that contain regular patterns
for vector code generation (e.g. LUFact, CG, MG), both SP

and SLP show similar speedups. The Opt post-pass provides
a performance improvement in all cases, since it eliminates
most of the redundant scalar variable packing and extraction
instructions after the register allocator assigns physical vector
registers to the operands. These redundant instructions may
include vector register moves, e.g., moves between IA32 SSE
registers. The copy propagation pass eliminates any remaining
redundant copy statements in the generated vector code.

To summarize individual benchmark performance improve-
ments of Sp+Opt compared to Sequential versions, for
FT, we observe a maximum improvement of 57.71% (using
unroll factor 16). For SOR, we observe a maximum improve-
ment of 52.91% (using unroll factor 8). For LUFact, we
observe a maximum improvement of 17.60% (using unroll
factor 4). For Moldyn, we observe a maximum improvement
of 25.06% (using unroll factor 2). For CG, we observe a
maximum improvement of 27.63% (using unroll factor 4).
Finally for MG, we observe a maximum improvement of
23.41% (using unroll factor 2). When comparing SP+Opt

with SLP, we achieve a maximum speedup of 13.78% (in
SOR using unroll factor 16). When comparing SP+Opt with
SLP+Opt, we achieve a maximum speedup of 6.74% (in SOR
using unroll factor 8).
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Fig. 10. Various scenarios for expanding opportunities for vector instruction
selection.

Automatic Selection of Unroll Factor: In addition to
performance speedups for benchmarks, we use the cost model
to predict the unroll-factor that gives the best performance for
a benchmark within the dynamic compiler. For every unroll
factor of the vectorizable innermost loop-nest in a specialized
method, we create a clone of the IR. The cloned copies
of the IR subsequently undergo the same standard compiler
optimizations including our vector instruction selection pass.
Our vectorization algorithm produces a unique cost for each
such cloned copy of the IR. Based on the best cost, we choose
the corresponding IR for execution and discard the others. Note
that our cost model captures both the register pressure and
relative cost of both scalar and vector instructions.

The best unroll factors according our cost model are indi-
cated by “*” in Figure 11. Except for SOR benchmark, we
are able to predict the correct unroll factor within the Jikes
RVM dynamic compiler. The reason for mis-prediction in SOR
benchmark can be attributed to the cache memory effects on
the cost model, which is a subject of future work.

Compile-time Overhead: SP is implemented within the
Jikes RVM dynamic compilation system, which means that

Factor 2 Factor 4 Factor 8 Factor 16
Vec Seq Vec Seq Vec Seq Vec Seq

FT 140 188 220 316 380 572 700 1082
CG 676 723 730 855 849 1063 1241 1676
MG 399 471 446 593 645 906 1077 1497
SOR 39 57 57 74 91 142 190 234
LUFact 193 198 209 221 317 332 342 358
Moldyn 302 318 596 625 1247 1299 2570 2586

TABLE III
STATIC NUMBER OF X86 INSTRUCTIONS GENERATED.

the vectorization is invoked during runtime. In this section,
we report the compile-time overhead for dynamic compilation.
Table II presents the compile-time for the vector instruction
selection algorithm described in Section IV (Vec) and the
total compilation time (Total) for each benchmark using
different unroll factors. For the non-unrolled version of FT, the
compile-time overhead of vectorization is 23 msec and the
total compilation time is 480 msec. The cost of compilation
is correlated with the increase in code. Hence, an unroll
factor of 16 results in larger compilation time than smaller
unroll factors. In all the cases we studied, the compile-time
overhead of SP+Opt ranges from 0.87% to 9.92% of the
total compilation time. This modest increase in compilation
time indicates that a dynamic compiler can use our dynamic
programming based vector selection algorithm in order to
achieve the runtime benefits shown in Figure 11.

Static Code Size Reduction: By applying vectorization,
the machine code size can also be reduced, since more instruc-
tion level parallelism (ILP) are employed. Table III compares
the static number of x86 instructions generated by the SP+Opt
vectorization algorithm (Vec) and the sequential execution
(Seq) for each benchmark using different unroll factors. The
data listed in this table shows the total number of instructions
for only those methods that are vectorized by SP+Opt in each
benchmark (i.e., the specialized methods). The reductions in
the number of instructions range from 0.627% (MolDyn with
unroll factor 16) to 35.3% (FT with unroll factor 16). For the
non-unroll FT, the size of vectorized code is 100 and non-
vectorized version is 118.

Comparison with Intel Compiler auto-vectorization: We
now report on an investigation of the SIMD parallelization
performed by v11.1 of the Intel Fortran Compiler (IFC) on
three NAS parallel benchmarks for which Fortran versions
are available (MG, CG, FT). We compiled and executed each
benchmark in the SER version of the NPB benchmark suite.
Figure 12 reports on the absolute performances of these
benchmarks and compares them with their corresponding
Java versions executed using Jikes RVM on an Intel Xeon
E5440 2.83GHz system. IFC-Seq and IFC-Vec refer to the
versions compiled with the -O3 -no-vec and -O3 options
respectively. The performance gaps between the Fortran and
Java versions are clearly visible in Figure 12. However, the
FORTRAN benchmarks surprisingly did not show any notice-
able performance improvements due to vectorization, whereas
the Java versions showed improvements of 17.5% for MG, 9.6%



Unroll Unroll Unroll Unroll
Factor 2 (msec) Factor 4 (msec) Factor 8 (msec) Factor 16 (msec)
Vec Total Vec Total Vec Total Vec Total

FT 24 480 26 472 37 523 79 796
CG 29 556 29 556 31 579 38 640
MG 5 112 6 108 6 114 9 119
SOR 5 94 5 94 6 100 10 111
LUFact 23 477 23 489 23 506 33 605
Moldyn 12 237 12 247 13 313 16 1608

TABLE II
COMPILE-TIME IN MILLI SECONDS FOR SP+Opt USING UNROLL FACTORS 2, 4, 8, AND 16.

for CG, and 15.54% for FT, when using our approach. A vec-
torization report obtained by using the -vec-report(3)

option showed that many loops were vectorized by IFC, but
they unfortunately did not contribute to a measurable speedup.
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Jikes RVM 3.0.0 (SP+Opt)

VI. RELATED WORK

Most past techniques for automatic vectorization are either
based on traditional loop-based vectorization [14], [18] or use
instruction packing to explore data parallelism within basic
lock level. Several compilers employ loop-level vectorization
techniques to perform automatic vectorization for innermost
loop-nest, e.g., Intel Compiler [5], IBM XL compiler [8] and
GNU Compiler [2]. This paper focuses on straight-line code
vectorization in the back-end of a dynamic compiler.

Larsen and Amarasinghe [20], [21] introduced the
Superword-Level Parallelism (SLP) algorithm which initiates
the vectorization process by identifying memory operations
that operate on contiguous addresses, forms groups, and then
packs the relevant instructions and merges small groups un-
til each group’s size reaches the size of SIMD vector. To
improve the vectorization, they also suggested techniques to
increase the number of contiguous memory operations in [22].
This superword technique shows good scalability to adapt to
different SIMD widths. One of the key limitations of this
algorithm is that it may not uncover vectorization opportunities
for complicated interleaved data accesses, which our paper

addresses. Additionally, their algorithm can not vectorize pure
scalar code, which our algorithm can by using scalar packing.

Kudriavtsev and Kogge [19] proposed a generalized ap-
proach for handling the permutation issue during vectorization.
The foundation of this method is again driven by contiguous
memory accesses as in [20]. It performs bi-directional search
on a data flow graph (DFG) to pack instructions into SIMD
groups. One direction starts from store operations and another
from load operations. Once it identifies mismatched SIMD
groups, it enumerates all permutation solutions and uses an
Integer Linear Program approach to select the best one. This
technique can solve the problem of vector instruction selection
with permutation, but it can’t handle scalars in the case
when no contiguous memory operations exist in the data
flow graph. Also, this bi-directional approach may generate
some redundant mismatch operations compared to the single-
direction packing. Integer Linear Programming also incurs
significant compile-time overhead making it impractical for
use in dynamic compilation.

In [24], Leupers introduced vector instruction selection
based on the Data Flow Tree (DFT) and Integer Linear
Programs (ILP). For each DFT, the parser generates a set
of DFT covers that includes both SIMD and non-SIMD
covers. The ILP approach is applied to choose the best cover
for generating SIMD instructions. This approach also has
difficulty in handling permutations, and is not practical for
dynamic compilation.

The authors in [17], [16] propose a vectorization tech-
nique based on rewriting rules using the dependence graph
that requires depth-first search, backtracking, and branch-and-
bound techniques. In contrast, our paper introduces a cost-
driven dynamic programming algorithm for vector instruction
selection which obtains a solution with best cost that includes
register pressure and peephole optimization considerations
during instruction selection. Additionally, our approach only
requires three passes over the dependence graph and avoids
the need for any search, back-tracking, and branch-bound
techniques. Our approach is compile-time efficient since it
increases the compile-time by less than 10%. Searching,
backtracking, and branch-bound techniques will undoubtedly
incur significant compile-time overheads.

The main focus of [26] is to perform interprocedural
compiler analysis to determine alignment of pointers during



compile-time. They also describe a vector code generation
algorithm that is tightly integrated with scheduling. The key
difference between our approach and their vector code genera-
tion algorithm is that their approach combines multiple scalar
operations using a heuristic which is based on both the number
of resulting vector instructions and the number of adjacent
subwords in the vector instruction, where as our approach uses
a profitability based approach that uses estimated instruction
costs to perform vector instruction selection. Their approach
does not necessarily yield the best cost vector code as scalar
operations are combined on-the-fly and scheduled during a
single pass of the dependence graph.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implementation
of an auto-vectorization framework integrated in the IA32
back-end of the Jikes RVM dynamic compiler. Our approach
includes a novel dynamic programming based vector instruc-
tion selection algorithm that is compile-time efficient. Our
approach also expands opportunities for generating vector code
in the following ways: (1) scalar packing explores opportu-
nities for packing multiple scalar variables into short vectors;
(2) judicious use of shuffle and horizontal vector operations;
and (3) algebraic reassociation expands opportunities for
vectorization by algebraic simplification. For the six bench-
marks studied in this paper, our results show performance
improvement of up to 57.71% (in the FT benchmark using
an unroll factor of 16), compared to the non-vectorized code,
with a modest increase in compile time in the range from
0.87% to 9.992%. An investigation of the SIMD parallelization
performed by v11.1 of the Intel Fortran Compiler (IFC) on
three benchmarks shows that our system achieves speedup
with vectorization in all three cases and IFC does not. Finally,
a comparison of our approach with an implementation of the
Superword Level Parallelization (SLP) algorithm from [20],
shows that our approach yields a performance improvement
of up to 13.78% relative to SLP.

For future work, we plan to port our framework to the
PPC back-end in the Jikes RVM compiler, and evaluate
our approach on the new VSX extensions in the POWER7
architecture. We would also like to study the impact of various
scheduling algorithms, such as trace and modulo scheduling,
on vectorization. Early experimental results for loops with
conditionals show promise in exploring scheduling and vec-
torization beyond a single basic block.
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